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Abstract
The common preference of cancers for lactic acid-generating metabolic energy pathways has led to proposals that
their reprogrammed metabolism confers growth advantages such as decreased susceptibility to hypoxic stress.
Recent observations, however, suggest that it generates a novel way for cancer survival. There is increasing
evidence that cancers can escape immune destruction by suppressing the anti-cancer immune response through
maintaining a relatively low pH in their micro-environment. Tumours achieve this by regulating lactic acid
secretion via modification of glucose/glutamine metabolisms. We propose that the maintenance by cancers of
a relatively low pH in their micro-environment, via regulation of their lactic acid secretion through selective
modification of their energy metabolism, is another major mechanism by which cancers can suppress the anti-
cancer immune response. Cancer-generated lactic acid could thus be viewed as a critical, immunosuppressive
metabolite in the tumour micro-environment rather than a ‘waste product’. This paradigm shift can have major
impact on therapeutic strategy development.
 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Deregulated proliferation of cancer cells is generally
associated with altered energy metabolism. Glucose
is a primary source of energy. Under aerobic con-
ditions, normal cells metabolize glucose to pyruvate
via glycolysis in the cytosol, and subsequently con-
vert pyruvate to carbon dioxide in the mitochondria
for oxidative phosphorylation; under anaerobic condi-
tions, conversion of pyruvate to lactic acid is favoured
with relatively low amounts of pyruvate being diverted
to the mitochondria. In contrast, cancer cells primar-
ily derive energy from glucose via glycolysis to lactic
acid, even under highly aerobic conditions, a prop-
erty first observed by Otto Warburg [1]. This ‘aerobic
glycolysis’, also known as the ‘Warburg effect’ [2],
is much less energy-efficient than the oxidative phos-
phorylation pathway [3]. It is usually accompanied
by marked increases in glucose uptake and consump-
tion [4], a phenomenon commonly exploited in tumour
imaging using 18-fluorodeoxyglucose positron electron
tomography [5]. In addition, cancer cells derive energy

from up-regulated non-glucose-dependent pathways,
such as increased glutaminolysis under aerobic con-
ditions [2,6,7]. Aerobic glycolysis and increased glu-
taminolysis are collectively regarded as ‘reprogrammed
energy metabolism’, a phenomenon now generally
accepted as a key metabolic hallmark of cancer [3,8,9].
Both pathways lead to the production and secretion of
lactic acid, markedly contributing to metabolic acidosis
commonly found in solid cancers [2,6,7]. Extracellular
pH values in tumours can be as low as pH 6.0–6.5, in
contrast to pH 7.5 present in normal cell environments
[10–12].

Why do cancers opt for altered energy
metabolism?

The preference of cancers for aerobic glycolysis over
the more energy-efficient oxidative phosphorylation
pathway has been a subject of major interest since it
was first observed in the 1920s [13]. Many researchers
have speculated on the advantages of aerobic glycolysis
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for cancers, but the causal relationship of this altered
metabolism to cancer development is still unclear [3].
Otto Warburg speculated that the metabolic alteration
was necessitated by a mitochondrial defect in the can-
cer cells impairing normal oxidative phosphorylation
[14]. However, further studies have since shown that
mitochondrial defects only partially account for the
phenomenon. Although certain malignancies indeed
harbour mitochondrial defects that make aerobic gly-
colysis a necessity [15], the majority of cancers are
able to revert back to oxidative phosphorylation when
lactic acid generation is inhibited [16].

Tumours commonly encounter fluctuating oxygen
levels, periodically alternating between normoxic and
hypoxic conditions [17]. This raises the distinct possi-
bility that aerobic glycolysis has arisen as an adaptation
to hypoxic conditions. Use of oxygen-independent
glycolysis would confer a proliferative advantage to
cancer cells, making them less susceptible to hypoxic
stress during episodes of spontaneous hypoxia [13],
even if that would come at a cost of energy ineffi-
ciency during times of adequate oxygenation. This
theory has been extended by suggesting cooperation
between normoxic and hypoxic cancer cells within
a tumour aimed at maximizing energy efficiency [2].
It is proposed that the hypoxic cells are the primary
utilizers of glucose, converting it via glycolysis to
lactate. Furthermore, lactate secreted by the hypoxic
cells would be taken up by normoxic cancer cells and
then converted back to pyruvate for oxidation via the
citric acid cycle [2,18]. This theory, however, does
not fully account for the preference of cancers for
glycolysis under conditions of abundant oxygenation.

Components of glucose uptake and glycolytic path-
ways can be up-regulated by oncogenes such as Ras ,
Akt , and Myc [3]. This observation is particularly
intriguing, since oncogenic activation is often thought
of as an early event in cancer development and progres-
sion, and aerobic glycolysis may hence actually predate
the onset of hypoxic selection and have a functional
role in the early stages of the disease. Other propos-
als have been put forward, primarily focusing on the
mechanisms by which aerobic glycolysis could con-
fer a proliferative advantage to cancer cells [3,13,19].
As this pathway is much less efficient than oxida-
tive phosphorylation in generating ATP, ie by approx-
imately 18-fold, the question is raised as to how a
reduced supply of ATP can lead to improved prolif-
erative potential. One proposal states that the advan-
tage of aerobic glycolysis lies in incomplete utiliza-
tion of glucose, allowing upstream intermediates to be
redirected for biosynthesis, thereby providing cancer
cells with an abundance of building blocks for syn-
thesis of essential cellular components such as macro-
molecules [19]. While such an explanation appears
sound, there is still controversy regarding how com-
mon such a mechanism is in normal proliferating cells
[20]. Another proposal states that acidification of the
micro-environment by lactic acid, resulting from up-
regulation of glycolysis, can be expected to lead to the

development of acid-resistant phenotypes exhibiting a
powerful, selective growth advantage that promotes
unconstrained proliferation and tissue invasion of can-
cer cells [13].

Increased glutaminolysis would also have several
advantages for cancers: glutamine is the most abundant
amino acid in plasma and forms an important additional
energy source in tumour cells, especially when gly-
colytic energy production is low; increased availability
of the degradation products of glutamine, ie glutamate
and aspartate, as precursors for nucleic acid and ser-
ine synthesis; and the insensitivity of glutaminolysis to
high concentrations of reactive oxygen species [2,6,7].

Of major interest is the finding that the repro-
grammed energy metabolism plays an important role
in cancer growth-promoting angiogenesis. Angiogenic
endothelial cells, like tumour cells, are largely depen-
dent on aerobic glycolysis and increased glutaminolysis
for energy. The preference for these pathways allows
the development of neovasculature from endothelial,
tumour-blood-vessel-lining cells under hypoxic condi-
tions. In addition, lactic acid generated by the path-
ways has been found to markedly promote angio-
genesis by increasing the production of interleukin-
8/CXCL8, driving the autocrine stimulation of endothe-
lial cell proliferation and maturation of new blood ves-
sels [21,22].

Altered energy metabolism and evasion of
immune destruction—lactic acid as a critical,
regulatory metabolite

Recent studies indicate that altered energy metabolism
can also enhance the growth of cancers by promoting
tumour evasion of immune destruction. It is now
commonly accepted that a transformed, immunogenic
cell can only develop into a tumour if it has the
ability to evade the cytotoxic immune response that
it evokes [8,23]. The anti-cancer immune response,
as it is mediated by effector T-cells, has long been
known to be highly dependent on components of the
micro-environment such as helper cells and cytokines.
However, it is also influenced by the environmental pH;
an acidic pH can markedly impede the function of nor-
mal immune cells [24,25]. Lowering the environmental
pH to 6.0–6.5, as can be found in tumour masses,
has been reported to lead to loss of T-cell function of
human and murine tumour-infiltrating lymphocytes (eg
impairment of cytolytic activity and cytokine secre-
tion); the T-cell function could be completely restored
by buffering the pH at physiological values [11].

The primary cause responsible for the acidic pH
and pH-dependent T-cell function-suppressive effect
in a tumour micro-environment has been identified as
lactic acid [26–30]. It has also been demonstrated that
cancer-generated lactic acid and the resultant acidifica-
tion of the micro-environment increase the expression
of ARG1 in tumour-associated macrophages, charac-
teristic of the M2 helper phenotype [31]. Furthermore,
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Figure 1. A proposed model for the central, regulatory immunosuppressive role of cancer-generated lactic acid with both experimentally
demonstrated (in black) and potential (in grey) consequences. The excess lactic acid produced by cancer cells through reprogrammed
metabolism results in an acidified tumour micro-environment. This decrease in pH promotes multiple cancer processes, including
angiogenesis, invasion, and metastasis. More importantly, the acidic tumour micro-environment also suppresses the anti-cancer immune
response, particularly through decreased cytotoxic T-cell function, reduced dendritic cell maturation, and enhanced helper cell activities.
This locally suppressed immunity then enables cancer cells to survive and serves as a basis for subsequent malignant progression. As
such, cancer-generated lactic acid promotes tumour evasion of immune destruction and should be viewed as a critical immunosuppressive
metabolite rather than a ‘waste product’.

another study showed that under physiological or
slightly alkaline conditions, glycolysis was selectively
up-regulated by neuroblastoma cells, whereas oxidative
phosphorylation was preferred by the cells when the
extracellular pH was acidic; these effects were inde-
pendent of changes in oxygen concentration or glucose
supply [32]. Thus, aerobic glycolysis can serve as a
negative feedback loop that adjusts the pericellular pH
in tumours towards a broad acidic range by increased
lactic acid production and secretion. Taken together,
the studies suggest that cancer cells can enhance
their survival by inhibiting the anti-cancer immune
response through actively maintaining a slightly acidic

micro-environment. They apparently can do this by
altering their energy metabolism to regulate their
lactic acid production/secretion [32]. The locally
suppressed immunity then serves as a basis for the
establishment of the malignancy and its subsequent
malignant progression (see Figure 1).

In view of the above, researchers are starting to
attribute a critical, regulatory role to lactic acid rather
than regarding it as a mere metabolic waste product
[13,33]. Supporting this hypothesis are reports that lac-
tic acid has been found to be a key player in the devel-
opment and malignant progression of a variety of can-
cers, with high tumour lactate levels being predictive
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of metastasis and restricted patient survival [33,34].
In addition, lactate dehydrogenase A, the enzyme that
catalyses the conversion of pyruvate to lactate, has
been found to play an important role in the malignant
progression of oesophageal squamous cell carcinoma
[35] and tumourigenicity of intestinal-type gastric
cancer [36]. Furthermore, evidence has been found for
involvement of the plasma membrane lactate trans-
porter, MCT4, in breast [37] and prostate [38] cancer.

Immunosuppressive effect of cancers and
epithelial immune cell-like transition (EIT)

As previously reviewed, there apparently are various
ways by which epithelial cancers can suppress an
anti-cancer immune response [39]. We have proposed
that their immunosuppressive ability may stem from
an acquisition of specific immune cell properties
via a transdifferentiation process that we coined
‘epithelial immune cell-like transition’ (EIT) [39]. The
acquired properties enable cancer cells to suppress the
anti-cancer activity of immune cells in their micro-
environment by, for example, secreting chemokines to
enhance recruitment of T-regulatory cells to the tumour
site or producing immunosuppressive cytokines. In
this context, the suppression of the immune response
by cancers through controlled, lactic acid-induced
acidification of their micro-environment appears to
be yet another mechanism by which cancers can
locally suppress the immune system in an otherwise
immunocompetent host.

Implications for cancer therapy

Aerobic glycolysis and increased glutaminolysis are
preferred metabolic energy-generating pathways of
cancer [2,8,9] and also have, as mentioned above,
an important role in tumour angiogenesis due to the
angiogenesis-stimulating effect of lactic acid and
the dependence of endothelial cells on this altered
metabolism for energy under hypoxic as well as nor-
moxic conditions [21,22]. Furthermore, as described
above, a growing body of evidence indicates that this
altered energy metabolism leads to lactic acid-induced
acidification of the cancer micro-environment sup-
pressing the anti-cancer immune response [11,26–30].
Targeting these altered metabolic pathways could
therefore lead to inhibition of cancer growth based
on energy deprivation, in particular under hypoxic
conditions, and the growth-inhibitory effects would
be especially marked if accompanied by inhibition of
tumour angiogenesis and by restoration of the anti-
cancer immune response in the micro-environment of
the cancers. Additionally, the production of reactive
oxygen species (ROS) in the mitochondria is closely
tied to normal oxidative metabolism. While the
generation of ROS is often associated with tumour
progression through damage to DNA and other cellular
components, it is suggested that these species play a

critical role in regulating various normal physiological
processes such as immune function and autophagy
[40]. As such, the inhibition of lactic acid production
in cancer cells may help to re-establish physiological
ROS homeostasis and restore normal cellular func-
tions. One drawback of attempting to annihilate cancer
through an energy deprivation approach, however,
is the likelihood that normal cellular metabolism
will also be disrupted; careful pharmacological
considerations are therefore required [41]. Further-
more, partial inhibition of angiogenesis may lead to
normalization of tumour vasculatures, resulting in
enhancement of tumour responses to chemotherapy,
radiotherapy, and immunotherapy. A window of
tumour vascular renormalization would need to be
established to maximize the effects of targeting the
altered metabolic pathways in combination with other
strategies [42,43].

The restoration of the anti-cancer immune response
may be accomplished not only through targeting of
the two pathways leading to inhibition of lactic acid
production [28], but also by interfering with pH reg-
ulators such as the proton pump, the sodium–proton
exchanger family, and the bicarbonate transporter
family [10–12,30,44,45]; in this context, it is of
interest that regulation of intracellular pH has recently
been reported to involve histone acetylation [46].
The latter strategies could be useful in combina-
tion with immunotherapeutic approaches. Thus far,
however, strategies targeting aerobic glycolysis and
increased glutaminolysis have often been mainly
aimed at inhibiting invasive and metastatic behaviour
of malignancies and have not focused on restoring or
enhancing the immune response [10,45]. Therapeutic
effects are commonly examined in experimental
immuno-deficient cancer models [47–49], instead
of immuno-uncompromised models required to
demonstrate effects on the immune response. Key
components of the glycolytic pathway have been
targeted and such endeavours have been extensively
reviewed elsewhere [41,50], with a number of them
showing promising results with regard to disease
stabilization and tumour regression [49,51].

Altered glucose/glutamine metabolism is only
one aspect of tumour metabolism. In addition to
lactic acid, other metabolites that suppress T-cell
function can be generated by tumours via alterations
of lipid and adenosine metabolisms, eg indolamine-
2,3-dioxygenase, arginase, inducible nitric oxide
synthetase, and lactate dehydrogenase, important play-
ers in immune escape mechanisms. Pharmacological
blockage of such metabolites could lead to improved
cancer therapy by rescuing the endogenous immune
response against tumour cells [52,53].

Conclusions

Lactic acid, commonly generated by cancers via
reprogrammed energy metabolism (ie aerobic
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glycolysis, increased glutaminolysis), has a critical
role in their growth as an immunosuppressive metabo-
lite as well as a promoter of angiogenesis. Targeting
altered, lactic acid-producing metabolisms of cancers
may therefore lead to inhibition of their growth not
only via energy/nutrition deprivation, but also through
reduction of their immunosuppressive activity in
the tumour micro-environment. This strategy, which
simultaneously targets two fundamental cancer charac-
teristics (ie altered energy metabolism and evasion of
immune destruction), could be effective for the therapy
of a broad range of cancers and could be particularly
useful in combination with cancer immunotherapy.
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